geom_alignment {ggbio} | R Documentation |
Show interval data as alignment.
## S4 method for signature 'GRanges' geom_alignment(data, ..., xlab, ylab, main, facets = NULL, stat = c("stepping", "identity"), range.geom = c("rect", "arrowrect"), gap.geom = c("chevron", "arrow", "segment"), rect.height = NULL, group.selfish = TRUE) ## S4 method for signature 'TranscriptDb' geom_alignment(data, ..., which, xlim, truncate.gaps = FALSE, truncate.fun = NULL, ratio = 0.0025, xlab, ylab, main, facets = NULL, geom = "alignment", stat = c("identity", "reduce"), range.geom = "rect", gap.geom = "arrow", utr.geom = "rect", names.expr = "tx_name(gene_id)")
data |
A |
... |
Extra parameters such as aes() passed. |
xlab |
Label for x |
ylab |
Label for y |
main |
Title for plot. |
facets |
Faceting formula to use. |
stat |
For For |
gap.geom |
Geom for 'gap' computed from the data you passed based on the group information. |
rect.height |
Half height of the arrow body. |
group.selfish |
Passed to |
which |
|
xlim |
Limits for x, to subset the |
truncate.gaps |
logical value indicate to truncate gaps or not. |
truncate.fun |
shrinkage function. Please see |
ratio |
used in |
geom |
geometric object. only support "gene" now. |
range.geom |
geom for main intevals or exons. |
utr.geom |
geom for utr region. |
names.expr |
Expression for showing y label. |
A 'Layer'.
Tengfei Yin
set.seed(1)
N <- 100
require(GenomicRanges)
## ======================================================================
## simmulated GRanges
## ======================================================================
gr <- GRanges(seqnames =
sample(c("chr1", "chr2", "chr3"),
size = N, replace = TRUE),
IRanges(
start = sample(1:300, size = N, replace = TRUE),
width = sample(70:75, size = N,replace = TRUE)),
strand = sample(c("+", "-", "*"), size = N,
replace = TRUE),
value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),
sample = sample(c("Normal", "Tumor"),
size = N, replace = TRUE),
pair = sample(letters, size = N,
replace = TRUE))
## ======================================================================
## default
## ======================================================================
ggplot(gr) + geom_alignment()
## or
ggplot() + geom_alignment(gr)
## ======================================================================
## facetting and aesthetics
## ======================================================================
ggplot(gr) + geom_alignment(facets = sample ~ seqnames, aes(color = strand, fill = strand))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'fill' is already present. Adding another scale for 'fill',
## which will replace the existing scale.
## ======================================================================
## stat:stepping
## ======================================================================
ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair))
## ======================================================================
## group.selfish controls when
## ======================================================================
ggplot(gr) + geom_alignment(stat = "stepping", aes(group = pair), group.selfish = FALSE)
## =======================================
## main/gap geom
## =======================================
ggplot(gr) + geom_alignment(range.geom = "arrowrect", gap.geom = "chevron")
## =======================================
## For TranscriptDb
## =======================================
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
data(genesymbol, package = "biovizBase")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
## made a track comparing full/reduce stat.
p1 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"])
## Aggregating TranscriptDb...
## Parsing exons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...
p2 <- ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], stat = "reduce")
## Aggregating TranscriptDb...
## Parsing exons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...
tracks(full = p1, reduce = p2, heights = c(3, 1))
tracks(full = p1, reduce = p2, heights = c(3, 1)) + theme_tracks_sunset()
tracks(full = p1, reduce = p2, heights = c(3, 1)) +
theme_tracks_sunset(axis.line.color = NA)
## change y labels
ggplot(txdb) + geom_alignment(which = genesymbol["RBM17"], names.expr = "tx_id:::gene_id")
## Aggregating TranscriptDb...
## Parsing exons...
## Parsing cds...
## Parsing transcripts...
## Aggregating...
## Done
## Constructing graphics...